top of page
Search

diabetes-prediction-PyCaret-

  • Writer: Nour El banna
    Nour El banna
  • Sep 10
  • 1 min read

🌟 Features

  1. 🎨 Custom User Interface

    • Clean white background for a professional look.

    • Bold white labels for input fields.

    • Modern blue-styled prediction button.

    • Sliders with black text for better readability.

  2. 🩺 Input Form for Health DataUsers can enter health metrics via interactive sliders:

    • Pregnancies 🤰

    • Glucose level 🩸

    • Blood Pressure 💓

    • Skin Thickness 🧬

    • Insulin 💉

    • BMI (Body Mass Index) ⚖️

    • Diabetes Pedigree Function (Genetic Risk) 🧪

    • Age 🎂

  3. 🤖 Machine Learning Integration

    • Loads a pre-trained PyCaret classification model (best_diabetes_model).

    • Uses predict_model() to make predictions on user input.

  4. 📊 Prediction Results

    • Outputs whether the user is Diabetic 🚨 or Not Diabetic ✅.

    • Displays the confidence percentage of the prediction.

    • Results shown in a clear, color-coded message (st.error for diabetic, st.success for not diabetic).

  5. ⚡ Real-time Interaction

    • The app responds instantly when the “🔍 Predict” button is clicked.

    • Users can adjust inputs and immediately get new predictions.

👉 In short:This app is a fast, interactive, and user-friendly diabetes prediction tool powered by Streamlit and PyCaret. It’s useful for demonstrations, educational purposes, and as a base for healthcare-related predictive systems.


click on the image to see more about the project ⬆️
click on the image to see more about the project ⬆️

 
 
 

Comments


bottom of page